

Bund/Länder-Arbeitsgemeinschaft Abfall

LAGA Forum Abfalluntersuchung

Handlungshilfe zur Anwendung der LAGA Mitteilung 32 (LAGA PN 98)

Stand: 5. Mai 2019

An der fachlichen Erarbeitung beteiligte Personen/Institutionen in alphabetischer Reihenfolge:

Dr. Axel Barrenstein, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen Ralf Behrend, Landeslabor Berlin-Brandenburg

Dr. Hans-Martin Berends, Landesamt für Landwirtschaft, Umwelt und Ländliche Räume des Landes Schleswig-Holstein

Dr. Ulrich Bochert, Institut für Hygiene und Umwelt der Freien und Hansestadt Hamburg

Dominik Bogner, Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Dr. Jan Brodsky, Hessisches Landesamt für Naturschutz, Umwelt und Geologie

Dr. Jürgen Diemer, Bayerisches Landesamt für Umwelt

Sibylle Fütterer, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Marion Grötzner, Landesamt für Umweltschutz Sachsen-Anhalt

Dr. Ina Gründer, Zentrale Unterstützungsstelle für Abfall, Gentechnik und Gerätesicherheit beim Staatlichen Gewerbeaufsichtsamt Hildesheim, Niedersachsen

Brigitte Hennen, Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin

Dr. Carsten Schäfer, Landesanstalt für Umwelt Baden-Württemberg

Dr. Gerhard Schmiedel, Landesamt für Umwelt Rheinland-Pfalz

Reinhard Sudhoff, Regierungspräsidium Kassel

Vorbemerkungen und Zielsetzung

Die LAGA PN 98 ist seit 2001 als Standard im Bereich Untersuchung von Abfällen bekannt und wurde von der ACK den Ländern zur Anwendung empfohlen. Für die grundlegende Charakterisierung zu deponierender Abfälle wurde sie mit der Deponieverordnung 2009 verbindlich. Die LAGA PN 98 wurde im Jahr 2009 als Bestandteil der DepV bei der EU notifiziert und untersetzt die europäische DIN EN 14899 für den nationalen Vollzug. Damit ist die LAGA PN 98 bei der Deponierung von Abfällen verbindlich anzuwenden. Für alle anderen Entsorgungswege kann sie als Stand der Technik für die Probenahme angewandt werden. Ihre Anwendung ermöglicht ausreichend reproduzierbare, abfallcharakterisierende Untersuchungen.

Für eine ordnungsgemäße und schadlose Verwertung (§ 7 Abs. 3 KrWG) müssen Abfälle die jeweils geltenden Beurteilungswerte einhalten. Hierfür ist es erforderlich, den Abfall mit Hilfe von Messwerten zutreffend zu charakterisieren. Basis dieser Charakterisierung ist die korrekte Anwendung der LAGA PN 98. Falls notwendig, kann die Anwendung auf der Grundlage des § 51 Abs. 1 Satz 1 Nr. 2 KrWG in Verbindung mit § 10 Absatz 2 Nummer 2 und 3 sowie 5 bis 8 KrWG im Einzelfall auch behördlich angeordnet werden.

Mit Hilfe der LAGA PN 98 können unterschiedlich belastete Kompartimente in Abfällen erkannt werden, so dass diese ggf. separiert und getrennten Entsorgungswegen zugeführt werden können. Dies unterscheidet eine Norm zur Untersuchung von Abfällen von einer Norm zur Untersuchung von Produkten, bei denen von gleichbleibenden Eigenschaften auszugehen ist.

So dienen z. B. die Produktnormen DIN EN 932-1 "Prüfverfahren für allgemeine Eigenschaften von Gesteinskörnungen – Teil 1: Probenahmeverfahren" und DIN EN 932-2 "Teil 2: Verfahren zum Einengen von Laboratoriumsproben" in erster Linie dazu, die bautechnischen Eigenschaften von Gesteinskörnungen aus dem Produktionsprozess zu ermitteln. Dementsprechend können diese Normen zwar herangezogen werden, um die durchschnittliche Schadstoffbelastung von aufbereiteten Recyclingbaustoffen im Rahmen der werkseigenen Produktionskontrolle und der Fremdüberwachung festzustellen. Als Grundlage für die abfallrechtliche Einstufung von nicht in gleichbleibender Zusammensetzung anfallenden Abfällen sind sie jedoch nicht oder nur bedingt geeignet.

Zwischenzeitlich ist die Normungsreihe DIN 19698 zur Untersuchung von Feststoffen entstanden.

Die DIN 19698-1 "Untersuchung von Feststoffen – Probenahme von festen und stichfesten Materialien – Teil 1: Anleitung für die segmentorientierte Entnahme von Proben aus Haufwerken", Ausgabe Mai 2014, enthält weitgehend der LAGA PN 98 analoge Anforderungen an die segmentweise Beprobung von Haufwerken.

Die DIN 19698-2 "Untersuchung von Feststoffen – Probenahme von festen und stichfesten Materialien – Teil 2: Anleitung für die Entnahme von Proben zur integralen Charakterisierung von Haufwerken", Ausgabe Dezember 2016, beschreibt die Probenahme aus Haufwerken, wenn die Kenntnis einer durchschnittlichen stofflichen Zusammensetzung für die Beurteilung ausreichend ist. Sie wird als integrale Charakterisierung bezeichnet und ist ausschließlich für Fragestellungen geeignet, bei denen die Durchschnittseigenschaft der Grundmenge, nicht aber die räumliche Verteilung eines Merkmals in der Grundmenge oder Spitzenwerte maßgebend sind. Dies setzt eine gewisse Gleichförmigkeit und Sortenreinheit der Abfälle voraus, die vorab festzustellen ist. Des Weiteren sind die in der DIN 19698-2 formulierten Grundlagen (Abschnitt 5) zu beachten. Hierfür sind Kenntnisse zu Probenahmestreuung und Analysenstreuung unabdingbar.

Im Rahmen von Projekten des Länderfinanzierungsprogramms Abfall konnte aufgezeigt werden, dass bei bestimmten Abfällen durch Konkretisierung von Anforderungen der LAGA PN 98 die Ergebnisqualität erhöht werden kann. Die Erkenntnisse hieraus sind in diese Handlungshilfe eingeflossen.

So konnte z. B. gezeigt werden, dass die in der LAGA PN 98 geforderte Probenmenge und Probenanzahl in der Regel erforderlich ist, um Abfälle mit ausreichender Sicherheit zu charakterisieren. Der Aufwand, der bei schablonenhafter Anwendung der LAGA PN 98 entstehen kann, kann jedoch bei fachgerechter Interpretation in einigen Fällen reduziert werden. In anderen Fällen ist die Anzahl der Proben zu erhöhen. Für beide Konstellationen wurde die vorliegende Handlungshilfe erarbeitet. Sie soll Behörden und Gutachtern helfen, vorhandenes Vorwissen über den Abfall und seine Entstehung gezielt einzusetzen. Dieses zu dokumentierende Vorwissen kann in Kombination mit gutachtlicher Bewertung helfen, den analytischen Aufwand zu optimieren.

Die LAGA PN 98 gibt Hinweise, wie Abfälle zu beproben sind. Unabhängig hiervon ist vor kostenintensiven Untersuchungen die Frage zu klären, auf welche Parameter Abfälle untersucht werden müssen. In Fällen, bei denen auf Grund von Vorkenntnissen (z. B. unbelasteter sortenreiner Bauschutt vor der Aufbereitung) und Erkenntnissen aus Voruntersuchungen (z. B. in situ) ausreichende Kenntnisse für eine Beurteilung des jeweiligen Abfalls vorhanden sind, kann der Untersuchungsaufwand deutlich verringert werden.

In dieser Arbeitshilfe werden, auf Grundlage der häufigsten Fragen und Fehler, Lösungsansätze entsprechend den Gliederungspunkten der LAGA PN 98 dargestellt. Es ist Fachkunde erforderlich, um mit Hilfe der LAGA PN 98 und dieser Handlungshilfe aus dem formulierten Untersuchungsziel ein an den Einzelfall angepasstes Konzept für die Probenahmestrategie und die Probenahmeplanung zu erstellen.

Zu 3.1 Grundlagen

Anforderung an das Fachpersonal für die Probenahme

Die Probenahme ist in der Regel von Personen durchzuführen, die über die dafür erforderliche Fachkunde verfügen. Darüber hinaus sollte sie von einer unabhängigen Stelle erfolgen. Zum Nachweis des Vorliegens der fachlichen Voraussetzungen kann auf die Akkreditierung gemäß DIN EN ISO/IEC 17025 zurückgegriffen werden. Für wiederkehrende Kontrolluntersuchungen, wie z. B. Annahmekontrollen auf Deponien, kann die Sachkunde ausreichend sein. Wenn die Probenahme von einem Sachkundigen durchgeführt wurde, muss ein Fachkundiger die ordnungsgemäße Probenahme bestätigen.

Sachkunde: Sachkunde bedeutet, dass für die jeweilige Aufgabe, hier die Durchführung der Probenahmen nach LAGA PN 98, die notwendigen Kenntnisse vorhanden sind. Nach Anhang 4 der DepV kann die Sachkunde durch eine erfolgreiche Teilnahme an einem Probenahmelehrgang nach LAGA PN 98 nachgewiesen werden. Im Anhang 1 werden Hinweise zu den erforderlichen Inhalten solcher Probenahmelehrgänge gegeben.

Fachkunde: Die Fachkunde kann durch qualifizierte Ausbildung (Studium etc.) oder langjährige praktische Erfahrung jeweils in Verbindung mit einer erfolgreichen Teilnahme an einem Probenahmelehrgang zur LAGA PN 98 nachgewiesen werden. Zur Aufrechterhaltung der Fachkunde ist es erforderlich, in regelmäßigen Abständen (mind. alle 5 Jahre) Auffrischungskurse zu absolvieren, um über neue Entwicklungen informiert zu werden.

Probenahmeprotokoll

Die Probenahme muss in jedem Fall in einem Probenahmeprotokoll in geeigneter Weise dokumentiert werden, dass alle wesentlichen Kenndaten enthält. Ohne aussagekräftiges Probenahmeprotokoll ist ein Messergebnis für eine Bewertung nicht zu gebrauchen. Für das Probenahmeprotokoll sind eigene Formulare, die mindestens die Vorgaben der LAGA PN 98 erfüllen, zulässig. Ein Musterformular kann dem Anhang 2 entnommen werden.

Zu 3.2 Repräsentativität der Probenahme

Abfälle können aufgrund ihrer schwankenden stofflichen Zusammensetzung in der Regel nicht repräsentativ beprobt werden. Für eine Verwertung von sortenreinen Abfällen (siehe Kapitel 6.1) ist es aber ausreichend, eine qualitative Einschätzung des Stoffbestandes einschließlich der Schwankungsbreiten zu haben.

Das Ziel der Untersuchung ist eine treffende Charakterisierung des Abfalls in Hinblick auf seinen Schadstoffgehalt. Somit geht es nicht nur um die Ermittlung eines mittleren Schadstoffgehaltes, sondern ebenso um eine qualitative gutachterliche Bewertung, die auch Aussagen zum Grad der Heterogenität des Materials enthält. Die Untersuchung ist deshalb von einem Fachkundigen zu planen und zu dokumentieren. Abweichungen von den Vorgaben der LAGA PN 98 sind zu begründen.

Zu 4. Probenahmestrategie

Die Strategie ist immer Grundlage für den Probenahmeplan.

Neben den in der LAGA PN 98 beschriebenen Strategien der Hot-Spot-Beprobung und der Charakterisierung der Grundmenge können weitere Probenahmeansätze notwendig sein. Diese können das Erkennen unzulässiger Vermischungen, eine Vor-Ort-Schnellanalyse, schrittweise Untersuchungen mit Aufbereitungsschritten (z. B. Separierung unterschiedlicher Bestandteile des Ursprungshaufwerks) und Anderes sein.

Die Probenahmestrategie ist abhängig von der Grundmenge, der Konsistenz sowie der Teilchen- und Stückgrößenverteilung.

Bei einer Kontrolluntersuchung muss beispielsweise "nur" geprüft werden, ob ein Abfall in seinen Charakteristika einem bereits bekannten Abfall entspricht. Der Parameter- und Probenumfang kann dann reduziert werden (siehe Kap. "Zu 6.4 Anmerkung zu Tab. 2").

Die Probenahmestrategie und der erforderliche Untersuchungsrahmen hängen wesentlich von den Vorkenntnissen ab. Ohne Vorkenntnisse ist ggf. ein Untersuchungsrahmen mit einem umfassenden Schadstoffspektrum und ggf. umfänglichen Screeningmaßnahmen erforderlich.

Bei der Probenahmestrategie sind immer folgende Punkte zu berücksichtigen:

Ziel einer Probenahme ist stets, dass die Probe möglichst alle Merkmale der beprobten Grundgesamtheit in dem richtigen Mengenverhältnis enthält. Dieses Ziel ist nur bei sehr homogenen Materialien erreichbar. In allen anderen Fällen handelt es sich um eine Annäherung. Folgende Kriterien können als Prüfpunkte für die Qualität der Probenahme herangezogen werden:

- Herkunft und Nutzungsgeschichte der Materialien sind bekannt.
- Die Entstehung des Haufwerkes konnte beobachtet werden. Es steht fest, dass sich an der Oberfläche die gleichen Merkmalsträger befinden, wie in seinem Inneren.
- Der Durchmesser der Probenahmewerkzeuge weist mindestens den dreifachen Durchmesser des D95 Kornes auf.
- Hot-Spots sind bekannt und soweit möglich entfernt.
- Das Haufwerk ist möglichst gut durchmischt.
- Entmischungen sind erkennbar.

Die Untersuchung von Kleinmengen erfordert eine besondere Strategie, da bei Kleinmengen umfangreiche Untersuchungen wirtschaftlich nicht zumutbar sind. Beispiele für Kleinmengen:

- Abfälle aus Aktivitäten von Heimwerkern oder Gartenbesitzern im privaten Herkunftsbereich (häufig < 1 m³),
- Abfälle aus Kleinaufträgen von Handwerkern im Hoch-, Tief- oder Gartenbau und
- Abfälle im gewerblichen Bereich (Baugewerbe, Garten- und Landschaftsbau) bis 20 Tonnen.

Diese Abfälle werden häufig nicht einzeln beprobt und entsorgt, sondern zu größeren Haufwerken zusammengeführt. Die Zusammenführung von Kleinmengen, die nicht von einem Standort stammen, kann dann erfolgen, wenn:

- die Abfälle dem gleichen Abfallschlüssel zugeordnet werden können,
- es sich nach organoleptischer Ansprache und Plausibilitätsprüfung um nicht gefährliche Abfälle handelt,
- eine unzulässige Vermischung zum Zwecke der Verdünnung von Schadstoffgehalten ausgeschlossen ist und
- Abfälle unterschiedlicher Belastung getrennt voneinander gehalten werden.

Mengenvorgaben für die einzelnen Kleinmengen und eine Begrenzung der Einzelchargen sind entbehrlich. Zusammengefasste Einzelchargen sollten jedoch eine Gesamthaufwerksmenge von 200 m³ nicht überschreiten. Zur Begrenzung von Entsorgungsrisiken oder aus anderen Gründen können für eine gemeinsame Beprobung und Entsorgung auch deutlich kleinere Haufwerke gebildet werden. Die einzelnen Haufwerke sind jeweils als eine Grundgesamtheit anzusehen und entsprechend der volumenabhängigen Probenanzahl aus Tabelle 2 der LAGA PN 98 zu beproben. Aufgrund der unterschiedlichen Anfallstellen der Abfälle, die dieses Haufwerk bilden, ist eine Reduzierung der Probenanzahl nicht möglich.

Zu 4.1 Hot-Spots

Hot-Spots sind abgegrenzte Kontaminationsschwerpunkte abfallwirtschaftlich relevanter Schadstoffe, die die Grundgesamtheit hinsichtlich ihrer Umweltauswirkungen negativ beeinflussen können und soweit möglich gesondert zu entsorgen sind. Hot-Spots sind generell als Einzelprobe (Sonderprobe) zu entnehmen und zu analysieren. Auffällige Bestandteile oder Areale können durch organoleptische Ansprache und ggf. Vor-Ort-Analyse erkannt werden.

Wenn eine Separierung der Hot-Spots von der Grundmenge nicht möglich ist, ist im Regelfall die gesamte Abfallcharge nach der Belastung des Hot-Spots einzustufen.

Beispiel: Bodenhaufwerk (700 m³) mit Teerölkonglomeraten

Das Haufwerk enthält neben Bodenaushub Teerölkonglomerate (Detail s. Bild 1 und Bild 2). Die Teerbestandteile wurden, da von Boden umhüllt, bei der Erstbeprobung nicht erkannt.

Ein durchgeführter Schnelltest (s. Bild 3) deutete auf PAK > 50 mg/kg hin.

Fazit: Die teerhaltigen Störstoffe sind nicht abtrennbar, da der Teer in den Boden eingesickert ist. Demzufolge ist das Haufwerk nach dem Messergebnis des Hot-Spots zu entsorgen. Für eine Verbrennung des Bodens wäre keine weitere Beprobung auf diese Parameter notwendig.

Bild 1: Bodenhaufwerk mit Teerölkonglomeraten

Bild 2: Von Boden umhülltes Teerölkonglomerat mit austretender Flüssigphase

Bild 3: Positiver (gelb) und negativer (weiß) Lacktest

Probenahmestrategien für die Hot-Spot-Beprobung beschreibt auch die DIN 19698-5 "Untersuchung von Feststoffen – Probenahme von festen und stichfesten Materialien – Teil 5: Anleitung für die Beprobung von Hot-Spots in Grundmengen", Ausgabe Mai 2018. Hinweise zur Bewertung der Hot-Spot-Belastungen in Bezug auf die zu untersuchende Grundmenge werden dort allerdings nicht gegeben.

Nicht als Hot-Spot gelten organoleptisch auffällige Restanteile aus dem Baubereich, wenn

- 1. die Herkunft und Entstehung des Haufwerks bekannt ist und
- 2. im Zuge des Rückbaus oder Aushubs die belasteten Anteile nach dem Stand der Technik so weit wie möglich abgetrennt wurden und
- 3. ausgeschlossen werden kann, dass sich die belasteten Anteile negativ auf die Schadlosigkeit der Entsorgung auswirken.

Als Beispiel hierfür kann ein Haufwerk aus Bodenmaterial mit nicht weiter abtrennbaren geringfügigen Anteilen von teerhaltigem Straßenaufbruch, die beim Rückbau zwangsläufig mit aufgenommen werden, gesehen werden.

Zu 5. Probenahmeplan

Die LAGA PN 98 fordert einen Probenahmeplan. Dieser ist ein zentraler Punkt der Probenahme und daher von einem Fachkundigen zu erstellen (zur Definition der Fachkunde siehe "Zu 3.1 Grundlagen").

Um einen Probenahmeplan zu erstellen, ist es erforderlich, Vorkenntnisse (Herkunft des Abfalls, vorliegende Messwerte, historische Erkundung, Vergleichsdaten aus ABANDA, Sondierungsergebnisse) auszuwerten und zu berücksichtigen.

Daneben müssen für die Auswahl der Probenahmewerkzeuge (z. B. Radlader, Schaufel, Pulverisierer (Abbruchzange), Behälter) die örtlichen Gegebenheiten der Abfalllagerungsstelle (z. B. Lage und Zugänglichkeit, Haufwerkshöhe, Umlagerungsmöglichkeiten, Platz für Mischprobenbildung) bekannt sein.

Der Probenahmeplan hat Angaben zur Auswahl der Parameter, der Probengefäße, der Probenaufbereitungsschritte und der Anforderung an die Lagerung und den Transport der Proben ins Labor zu enthalten. Der Probenahmeplan ist ggf. mit dem Untersuchungslabor abzustimmen. Bei der Untersuchung auf leichtflüchtige Schadstoffe ist eine Abstimmung in der Regel erforderlich. Für einfache Probenahmen können standardisierte Probenahmepläne erstellt werden. In allen anderen Fällen sind fallspezifische Probenahmepläne zu erstellen.

In Kapitel 5 der LAGA PN 98 wird gefordert, dass abgrenzbare Teilchargen, die z. B. Auffälligkeiten in Größe, Form, Stoffbestand, etc. zeigen, abzutrennen sind. Für jede Teilcharge sind separate Einzel-, Misch- bzw. Sammelproben zu entnehmen und getrennt zu untersuchen. Dies gilt nicht, wenn davon auszugehen ist, dass die Chargen die gleiche Schadstoffbelastung aufweisen.

Zu 6.1 Prüfung auf Homogenität / Inhomogenität / Heterogenität

Die Prüfung auf organoleptische Unterschiede (Heterogenität) dient dem Erkennen verschiedenartiger Materialtypen, die ggf. für sich beprobt, untersucht und ggf. nach Abtrennung unterschiedlichen Entsorgungswegen zugeführt werden müssen.

Sehr große Unterschiede in den Korngrößen innerhalb der Probe können den Verdacht begründen, dass die Fraktionen unterschiedliche Belastungen aufweisen und es notwendig machen, verschiedene Korngrößenfraktionen getrennt zu beproben und zu untersuchen.

Beispiel: Boden-Bauschutt-Mischhaufwerk

Das Haufwerk (Bild 4) enthält unterschiedliche Fraktionen: Bauschutt grob, Bauschutt Feinanteil, Putz, Teerpappe. Eine den Abfall charakterisierende Beprobung ist sehr aufwändig. Ursächlich hierfür ist die beim Rückbau unterbliebene Separierung. Eine Sektoreneinteilung ist nicht zielführend, da keine repräsentativen Ergebnisse, sondern lediglich Zufallsbefunde ermittelt würden. Das Haufwerk ist zu trennen. Die Hot-Spots müssen separiert und das Haufwerk in Fraktionen aufgetrennt werden. Von den aufgetrennten Fraktionen sind ggf. nach Zerkleinerung anschließend je nach Volumenverteilung die entsprechende Anzahl an Proben nach LAGA PN 98 Tab. 2 zu entnehmen. Eine Überprüfung mit dem RFA kann Hinweise auf weitere gefährliche Stoffe geben.

Das vorliegende Beispiel zeigt, dass bei solchen Mischhaufwerken einer abfallcharakterisierenden Probenahme mit verhältnismäßigen Mitteln Grenzen gesetzt sind.

Bild 4: Boden-Bauschutt-Mischhaufwerk

Zu 6.2 Volumen- / Massenbestimmung

Für die Umrechnung von Volumen in Massen können für Körnungen bis ca. 50 mm alternativ – und genauer – statt den allgemeinen Dichteangaben aus Tabelle 1 eigene Messergebnisse aus der Messung der Schüttdichte in 10 Liter-Eimern verwendet werden. Mehrfachmessungen erhöhen die Genauigkeit.

Zur Vereinfachung können bei der Abschätzung der Volumina von kegel- und kegelstumpfförmigen Schüttungen bei der hier notwendigen Genauigkeit die Faktoren 1/3 und Pi entfallen. Volumen von kegelförmigen Haufwerken berechnen sich demnach mit:

 $V = h * r^2$, Kegelstümpfe mit $V = h * (r_1^2 + r_1 * r_2 + r_2^2)$.

Zu 6.3 Ermittlung des Größtkorns

Sowohl zur Bestätigung der Bestimmung des Größtkorns als auch, um unterschiedliche Korngrößen und Materialien zuverlässig erkennen zu können, ist bei der Probenahme ein möglichst tiefer Aufschluss von Haufwerken – idealerweise mit schwerem Gerät – wesentlich.

Zu 6.4 Mindestanzahl an Proben

Die Tab. 2 der LAGA PN 98 sieht vor, dass z. B. bei einer Kubatur von 30 m³ aus jeweils vier Einzelproben (EP) eine Mischprobe (MP) zu generieren ist, so dass insgesamt zwei MP erhalten werden. Diese werden stets zu zwei Laborproben (LP) und liefern nach durchgeführter Analyse zwei Analysenergebnisse, wodurch die Beurteilung der stofflichen Homogenität durch eine Min-Max.-Betrachtung ermöglicht wird. Dieses Grundprinzip bleibt für größere Kubaturen erhalten und stellt einen bedeutenden Informationsgewinn dar, da nur aus der Untersuchung von mindestens zwei LP eine inhomogene Stoffverteilung erkannt werden kann.

Nur 1 Probe zu analysieren ist nicht zulässig!
Eine Reduzierung der Anzahl von 4 Einzelproben je Mischprobe ist nicht zulässig!

Eine höhere Anzahl der Einzelproben je Mischprobe erhöht die Belastbarkeit der Analysenergebnisse. Beim Auftreten von Partikeln mit stark unterschiedlichen Schadstoffgehalten sind Probenzerkleinerung und Probenteilung zusätzlich anzupassen. Hinweise zu der Vorgehensweise und zu dem benötigten Probenvolumen finden sich in dem Länderfinanzierungsprogramm Wasser, Boden und Abfall LAGA L1.17 (z. B. Tabelle 4-5).

Falls im Einzelfall eine erhöhte Genauigkeit erforderlich ist, sollte zur weiteren Verbesserung der Charakterisierung des Stoffinventars neben der Erhöhung der EP-Anzahl primär eine Erhöhung der MP-Anzahl und LP-Anzahl vorgenommen werden. Dies ist mit einer Erhöhung des Grades der stofflichen Charakterisierung verbunden, da die Tab. 2 der LAGA PN 98 lediglich den Mindestprobenumfang für QS-gesicherte Feststoffuntersuchungen liefert.

Zu 6.4 Anmerkung zu Tab. 2

Eine Reduzierung der zu analysierenden Proben bei der Haufwerksbeprobung ist nur möglich, wenn eine gleichbleibende Abfallqualität und eine gleichmäßige Schadstoffverteilung vorliegen. Diese müssen dokumentiert werden und sind zu belegen durch

- Kenntnis der Zusammensetzung1 in Bezug auf Herkunft und Entstehung und
- analytische Vorerkundung in situ/im Bestand und
- gutachterliche Begleitung des Abbruchs/Aushubs.

Dementsprechend müssen beispielsweise:

- Bauschutthaufwerke aus selektivem Rückbau stammen oder
- Haufwerke von Bodenmaterial mit jeweils möglichst ähnlicher Schadstoffbelastung gebildet werden (durch Nutzung der Ergebnisse orientierender Untersuchungen und historischer Recherchen, durch Kenntnisse des Materials; Analytisch muss eine gleichmäßige Schadstoffverteilung nachgewiesen werden) oder
- bei Abfällen mit kontinuierlichem Anfall die gleichbleibende Zusammensetzung aus vorhergehenden Untersuchungen ausreichend belegt sein.

Um zu gewährleisten, dass die getroffene Annahme einer gleichmäßigen Schadstoffverteilung im Haufwerk tatsächlich vorliegt, sind die folgenden Randbedingungen einzuhalten:

Es ist stets die vollständige Anzahl von Einzel-/Mischproben gemäß Tab. 2 der LAGA PN 98 zu entnehmen. Aus den Mischproben ist die nachstehend in Tabelle 1, letzte Spalte, angegebene Anzahl von Laborproben auszuwählen. Die Auswahl der Laborproben aus den Mischproben soll so erfolgen, dass ein möglichst großer Bereich des Haufwerks berücksichtigt wird. Daher sollen keine Mischproben von benachbarten Segmenten ausgewählt werden. Im Übrigen werden die Proben zufällig ausgewählt. Für die Bewertung ist der höchste Messwert maßgebend.

Der Rest der entnommenen Mischproben wird als Rückstellproben aufbewahrt. Sollte sich bei der analytischen Untersuchung der zufällig ausgewählten Laborproben die vorab angenommene Homogenität in der Schadstoffverteilung nicht bestätigen, müssen die Rückstellproben untersucht werden.

Eine ausreichend gleichmäßige Schadstoffverteilung kann angenommen werden, wenn für jeden Parameter zwischen dem niedrigsten und dem höchsten gemessenen Wert maximal ein Faktor 2 festgestellt wird. Eine höhere Abweichung ist nur zulässig, wenn der maximal gemessene parameterspezifische Wert weniger als 50 % des für die Beurteilung relevanten Zuordnungswertes beträgt.

Bei besonders homogenen Abfällen kann gemäß DIN 19698-2 untersucht werden. Daraus ergibt sich eine weitere Möglichkeit der Probenreduzierung. Diese ist allerdings ausschließlich für Fragestellungen geeignet, bei denen die Gleichförmigkeit und Sortenreinheit der Abfälle ähnlich der von Produkten ist.

Auch wenn alle genannten Voraussetzungen vorliegen, ist eine Reduzierung auf weniger als zwei Analysenproben nicht möglich, da die Untersuchung von lediglich einer Probe keine Rückschlüsse auf eventuell stark ungleichmäßige Schadstoffverteilungen erlaubt.

¹ Sofern von dem zu beprobendem Material schon Analysenergebnisse vorliegen, können diese zur Reduzierung der Probenanzahl bewertet werden. Dies kann der Fall sein, wenn zwischen Analyse und Entsorgung zeitliche Verzögerungen auftreten. Ein Analysenergebnis verliert seine Gültigkeit nicht automatisch dadurch, dass es alt ist.

Wenn die oben genannten Voraussetzungen nicht vorliegen, sind alle nach Tab. 2 der LAGA PN 98 zu bildenden Laborproben zu analysieren.

Tabelle 1: Mindestanzahl der Proben bei Haufwerken mit gleichmäßiger Schadstoffverteilung

Volumen der Grundmenge m³	Anzahl Einzelproben (EP)	Anzahl herzustellender Mischproben (MP) und Laborproben (LP)	Anzahl zu untersuchender Laborproben (LP) im begründeten Einzelfall
bis 30	8	2	2
bis 60	12	3	2
bis 100	16	4	2
bis 150	20	5	2
bis 200	24	6	2
bis 300	28	7	2
bis 400	32	8	2
bis 500	36	9	2
bis 600	40	10	3
bis 700	44	11	3
bis 800	48	12	3
bis 900	52	13	4

Bei einem Volumen > 500 m³ ist bei gleichbleibender stofflicher Zusammensetzung je angefangene 300 m³ mindestens 1 LP zusätzlich zu untersuchen. Das Gesamthaufwerk wird hier dennoch der Mischprobenzahl entsprechend in gleich große Sektoren eingeteilt (z. B. bei 800 m³ wird das Haufwerk in 12 Sektoren eingeteilt und die entsprechende Anzahl Mischproben entnommen).

Zum Sammelprobenkonzept nach Tab. 2 der LAGA PN 98:

Bei Haufwerken ist es zweckmäßiger, das gesamte Haufwerk in so viele Sektoren gleichmäßig zu unterteilen, wie durch die Anzahl der Laborproben vorgegeben wird. Bei einem Haufwerksvolumen von beispielsweise 1.200 m³ werden 12 Laborproben aus 12 volumengleichen Sektoren genommen, um so immer noch den Bezug der Messwerte zu einem Los/Sektor zu erhalten. Die Anzahl der Einzelproben je Sektor ergibt sich aus der Mindestanzahl der Einzelproben nach LAGA PN 98 Tab.2 Spalte 2 dividiert durch die Sektoranzahl. Das Ergebnis ist ganzzahlig aufzurunden.

Zu 6.5 Mindestgröße der Einzelproben

Bei der Entnahme der Einzelproben wird durch Verwendung standardisierter Behälter für die notwendigen Einzelprobenvolumina nach Tabelle 3 der LAGA PN 98 (0,5 bis 5 I) in Abhängigkeit der Korngröße erreicht, dass auch größere Stücke in die Probe gelangen können und gleiche Volumen je Einzelprobe entnommen werden. Nach Erstellung der Mischprobe sind die Behälter vor dem erneuten Einsatz zu reinigen, um Querkontaminationen zu vermeiden.

Weiterführende Hinweise zur Beprobung der Fraktion > 120 mm enthält Kapitel 5.5 der DIN 19698-1.

Zu 7. Vorbereitung der Misch-/Sammelprobe zur Laborprobe

Bei der Entnahme der Mindestvolumina für Einzelproben nach Tabelle 3 der LAGA PN 98 entsteht lediglich das Doppelte des für die Laborproben notwendigen Volumens. Bis zur Korngröße von 50 mm (Einzelprobenvolumen 2 I) ist deshalb bei gut mischbaren Materialien keine aufwändige Probenteilung notwendig. Ein intensives Homogenisieren und anschließendes Abfüllen der Laborprobe ist in diesen Fällen ausreichend.

Zu 7.1 Mindestvolumen der Einzel- und Laborproben

Die Mindestvolumina sind wesentlich, um den Abfall charakterisierende Untersuchungsergebnisse zu erhalten. Wichtig ist es, dass der hohe Aufwand bei der charakterisierenden Probenahme nicht durch fehlerhafte Probenvorbereitung im Labor konterkariert wird. Dies ist vor allem dann der Fall, wenn aus der angelieferten Probe lediglich die für die Untersuchung notwendige Menge oberflächennah aus dem Probengefäß entnommen wird, ohne die Probe im Labor nochmals zu homogenisieren und fachgerecht so lange zu teilen, bis das notwendige Aliquot erhalten wird. Nur bei fachgerechter Homogenisierung und Teilung der Gesamtprobe gemäß DIN 19747 werden repräsentative und wiederholbare Ergebnisse erzielt.

Zu 9.1.1 Beprobung von Haufwerken, Unterpunkt b) Probenahme mittels Bohrstockbeprobung, Probenstecher, Probenahmespeer, Schneckenbohrer

Der Vollständigkeit halber sei hier erwähnt, dass Probenentnahmen in begründeten Ausnahmefällen mittels Rammkernsondierungen möglich sind. Dabei ist der Einsatz elektrisch betriebener Geräte zu bevorzugen. Bei in der Regel maximalen Sondendurchmessern von 80 mm beschränkt sich die Einsatzmöglichkeit auf Materialien mit einem durchschnittlichen Größtkorn von 26 mm.

Zu 9.1.2 Beprobung nach Ausbreitung der Haufwerke / Mieten

Untersuchungen im Rahmen des Länderfinanzierungsprogrammes Wasser, Boden und Abfall LAGA L1.12 haben gezeigt, dass die Anlage eines Probenahmeteppichs mit Hilfe von Großgeräten die Aussagekraft der Ergebnisse erhöhen kann. Diese Methode ist ideal, wenn die zur Verfügung stehenden Flächen ein Ausbreiten des Materials ermöglichen.

Zu 9.1.3 Entnahme von Einzelproben direkt von Baggerschaufel, Greifer, Radlader

Die Entnahme von Proben mit Hilfe von Großgeräten stellt eine gute Möglichkeit dar, auch große Haufwerke vollständig zu untersuchen. Im Rahmen der Probenahmeplanung ist darzustellen, wie eine gleichmäßige Verteilung der Einzelproben über das Haufwerk erreicht werden kann und wie aus den großen zur Verfügung stehenden Probenvolumina charakterisierende Laborproben gewonnen werden können. Eine adäquate Probenzerkleinerung und Probenteilung ermöglicht qualitativ hochwertige Untersuchungen.

Die Entnahme der Proben und die Aufschichtung des Haufwerks sollten dabei so vorgenommen werden, dass eine spätere Zuordnung der Mischproben zu einzelnen Sektoren des Haufwerks möglich ist.

Beispiel für die Bestimmung der Entnahmefrequenz für Einzelproben:

Vorgabe: Im Rahmen des Aushubs oder der Umlagerung sollen Haufwerke bis maximal 500 m³ erstellt werden. Die Entnahme der Einzelproben erfolgt direkt von der Baggerschaufel. Die Ergebnisse der Laboranalysen sollen Sektoren zuordenbar sein. Das Entnahmevolumen der Baggerschaufel beträgt 1 m³.

Vorgehen:

- Bestimmung der Mindestanzahl der notwendigen Misch- bzw. Laborproben gemäß Tab. 2 der LAGA PN 98: 9 Mischproben
- Bestimmung der Mindestanzahl der notwendigen Einzelproben gemäß Tab. 2 der LAGA PN 98: 36 Einzelproben
- Es ist alle 500 m³ geteilt durch 36 Einzelproben eine Einzelprobe zu entnehmen.
- Somit ist von jeder 14. Baggerschaufel eine Einzelprobe zu entnehmen (bei VBaggerschaufel = 1 m³).
- Je 4 Einzelproben sind zu einer Mischprobe zu vereinigen.

Eine Erhöhung der Anzahl der entnommenen Einzelproben erhöht die Genauigkeit (z. B. Entnahme einer Einzelprobe von jeder 7. Schaufel). Es sollte jedoch für jeden Sektor die gleiche Anzahl entnommen werden.

Allgemeines

Bewertung der Messergebnisse

Die LAGA PN 98 beschreibt die Planung und Durchführung der Probenahme im Gelände. An die Probenahme schließt sich die Probenaufbereitung an, die in der DIN 19747 beschrieben wird. Die Probe ist vor Entnahme der Analysenproben im Labor nochmal intensiv zu homogenisieren (siehe auch Hinweise "Zu 7.1. Mindestvolumen der Einzel- und Laborproben"). Um den im Labor ermittelten Messwert für Entscheidungen nutzen zu können, ist es erforderlich, den ganzen Prozess von der Aufgabenstellung bis zum Messergebnis zu bewerten. Hierfür hat sich die "Checkliste – Vollständigkeitsprüfung von Gutachten zur Abfalleinstufung" der Methodensammlung Feststoffuntersuchung (Tab.II.12;1) bewährt.

Für die Beurteilung streuender Analysenergebnisse ist in der Methodensammlung Feststoffuntersuchung im Kapitel II.12 eine Beurteilungsgrundlage hinterlegt, anhand derer man entscheiden kann, ob die Ergebnisse eine vorgegebene Grenze einhalten. Diese kann herangezogen werden, soweit die rechtlichen oder technischen Regelwerke keine Vorgabe zur Beurteilung der einzelnen Messwerte enthalten. Die Voraussetzungen der Methodensammlung Feststoffuntersuchung für eine solche Beurteilung sind zu beachten.

Sind die Voraussetzungen der Methodensammlung nicht gegeben (zum Beispiel bei einer integralen Charakterisierung), ist nach dem höchsten Analysenergebnis, gegebenenfalls nach Hot-Spot-Untersuchungsergebnissen, einzustufen.

Anhang 1: Erforderliche Inhalte von Probenahmelehrgängen nach LAGA PN 98

1. Anforderungen an Lehrgangsleiter

- Fachkompetenz bezüglich der Inhalte der LAGA PN 98 und der Methodensammlung Feststoffuntersuchung
- Mindestens einmaliger Besuch eines Grundlagenseminars zur Probenahme
- Kenntnis einschlägiger Publikationen
- Hintergrundwissen zu Probenahme-Normen und (unter-)gesetzlichen Regelwerken
- Langjährige praktische Erfahrungen bei der Beprobung von festen und stichfesten Abfällen aus einschlägiger, professioneller Tätigkeit
- Kenntnisse über häufig vorkommende Schadstoffe und deren Vorkommen

2. Anforderungen an Lehrgänge

a. Zielsetzung

Vermittlung von theoretischen und praktischen Kenntnissen gemäß LAGA PN 98 zur Beprobung fester und stichfester Abfälle (Haufwerke, Behälter, Abfallströme) mit Schwerpunkt auf die Massenabfälle Bodenaushub und Bauschutt.

b. Theoretische Grundlagen

- Anwendungsbereich der LAGA PN 98: Begründung für segmentorientierte Probenahme als Standardverfahren zur Abfallcharakterisierung (heterogene Abfälle, bei denen örtliche Schwankungen in der Verteilung nicht ausgeschlossen werden können)
- Vermittlung der Probenahmestrategie
- Zweck und Inhalte eines Probenahmeplans
- Korrekte Volumenbestimmung eines Haufwerks
- Bedeutung
 - der Stoffverteilung im Zusammenhang mit der Haufwerksgröße und zusammensetzung (Stichwort: Heterogenität, inhomogene Stoffverteilung)
 - der Mindestanzahl und dem Mindestvolumen der Einzel-, Misch-/Sammel- und Laborproben
 - o des Erhalts der Prüfmerkmalsverteilung (Stichwort: Abbild durch Labor-/Prüfprobe)
 - o einer korrekten und aussagekräftigen Probenahmedokumentation
- Informationsbeschaffung vor der Probenahme für Arbeitsschutz und Probenahmestrategie (Herkunft, erwartete Belastungen (Art und Höhe) und Schadstoffverteilung)
- Qualitätssicherung und -kontrolle bei der Probenahme einschließlich vor-Ort-Analytik
- Grundlegende Kenntnisse zu Arbeitsschutzmaßnahmen (persönliche Schutzausrüstung, wesentliche Gefahrstoffe, Begehung von Haufwerken, Arbeit mit Großgeräten, Arbeit an Transportbändern)

c. Probenahme

- Entnahmeverfahren und Entnahmegeräte inkl. Anwendungsgebiete sowie Vor- und Nachteile (Haufwerksaufschluss mit Großgeräten, Handschurf, Beprobung von der Baggerschaufel, Stechlanzen und Rammkernsondierungen, Probenahmeteppich, Entnahme aus Materialströmen)
- Grundlegende Kenntnisse zur Heterogenität, Homogenität, Hot-Spot-Belastungen, Erhalt der Prüfmerkmalsverteilung bei der Probengewinnung mittels anschaulichem Bildmaterial

- Segmenteinteilung bei Haufwerksbeprobungen
- Erläuterung und Unterschied der Begriffe "repräsentative" und "abfallcharakterisierende" Probenahme inkl. Grenzen der abfallcharakterisierenden Beprobung von Mischhaufwerken
- Ermittlung der Größtkomponente, Erläuterung der Bestimmung des Mindest-Probenvolumens
- Erläuterung der Begriffe Einzel-, Misch-, Sammel- und Laborprobe
- Notwendige Mindestanzahl der Einzel-, Misch-, Sammel- und Laborproben
- Anordnung der Probenahmepunkte in Abhängigkeit von der Haufwerksgeometrie
- Voraussetzungen und Vorgehensweise bei der Probenreduzierung
- Häufige Fehlerquellen bei der Probenahme (fehlerhafte Volumenbestimmung, keine segmentorientierte Beprobung, zu wenig Laborproben, nicht aussagekräftige Haufwerks- und Probenahmebeschreibung, Nicht-Erkennen von schadstoffbelasteten Bestandteilen etc.)
- Verfahren der Probenteilung
- Geeignete Probengefäße für organische, anorganische, leichtflüchtige Schadstoffe
- Probenvorbehandlung vor Ort
- Probenahmedokumentation (Protokoll, Fotodokumentation, Probenübersicht)

d. Sonstige Inhalte (fakultative Inhalte in Kursivdruck)

- Hinweise auf weiterführende Literatur: einschlägige DIN-Normen, Methodensammlung Feststoffuntersuchung)
- Grundlegende Kenntnisse der Boden- und Materialbeschreibung (Hauptbodenarten, wichtige Bauschuttarten mit Schwerpunkt schadstoffbelastete Materialien (z. B. Teer, PCB-Fugenmassen, Teerkork)
- Auswertung der Analysenergebnisse nach Methodensammlung Feststoffuntersuchung inkl. Begriffe: Mittelwert, Median, 80er Perzentil, Statistische Betrachtung)
- Probenahme aus bewegten Abfällen
- Probenahme aus Transportfahrzeugen und verpackten Materialien
- PAK-Schnelltest (Einsatzmöglichkeiten und Grenzen)
- Darstellung der von der LAGA PN 98 abweichenden Inhalte der DIN 19698-1
- Rechtsgrundlagen für die Anwendung der LAGA PN 98
- Haftungsfolgen einer nicht fachgerechten Beprobung

e. Praxisteil

Praktische Probenahmeübung zur Vertiefung und als Test der vermittelten Kenntnisse, Schwerpunkt Haufwerksbeprobung mit

- Bestimmung des Haufwerksvolumens (Abschätzung, Berechnung bei unterschiedlicher Form) und Einteilung von Sektoren
- Begründung für bestimmte Vorgehensweisen (z. B. Hot-Spot-Proben) bei der Beprobung bestimmter Haufwerksbestandteile
- Probenahme mit Großgerätaufschluss inkl. Beprobung von der Baggerschaufel, Handschurf, Bauschuttbeprobung
- Probenteilung
- Ausfüllen eines Probenahmeprotokolls inkl. Fotodokumentation
- Beachtung der Arbeitsschutzmaßnahmen

3. Erfolgskontrolle und Sachkundenachweis

Eine Erfolgskontrolle zum Beispiel in Form eines Multiple-Choice-Tests und eine Abschlussdiskussion hat sich als sinnvoll erwiesen. Bei erfolgreicher Teilnahme ist eine Teilnahmebestätigung mit dem Lehrgangsdatum und den wichtigsten Lehrgangsinhalten auszustellen. Diese gilt als Sachkundenachweis.

Anhang 2: Beispiel für ein Probenahmeprotokoll

Probenahmeprotokoll

I. Projektdaten (für jedes Projekt einmal auszufüllen)

1	Auftraggeber:
2	Betreiber/Betrieb:
3	Ort/Landkreis:
4	Probenahmeort, Straße, Flurnummer:
5	Projekt:
6	Projektverantwortlicher (Name, Telefon, E-Mail):
7	Anlass/Grund der Probennahme:
	Beweissicherung Routine-/Fremdüberwachung Deklaration
	Sonstiges:
9	Topografische Karte als Anhang? Ja Nein
11	Aktuelle Flächennutzung: Lagerplatz
12	Oberflächenversiegelung/Untergrund: ohne Asphalt/Beton
13	Geologischer Untergrund/Boden:
14	Bemerkungen:
Ort, E	Datum, Name, Unterschrift Probenehmer/Projektverantwortlicher:

II Daten Haufwerk, Probentransport und Analytik (je Haufwerk einmal auszufüllen)

Α	Vor-Ort-Gegebenheiten
1	Probenehmer / Dienststelle:
2	Bezeichnung Haufwerk oder Probenahmestelle:
3	Art des Haufwerkes/des Abfallstoffes: Boden Bauschutt Sonstige
	Bodenart:
4	Herkunft des Probenahmematerials / Abfalls:
5	Wetter/Temperatur: Sonnig bedeckt Regen Starkregen Schneefall ca. °C
6	Vermutete Schadstoffe/Gefährdungen: Schwermetalle PAK PCB MKW Benzin
	☐ BTEX ☐ CKW ☐ Asbest ☐ unbekannt ☐ Sonstige:
7	Lagerungsdauer:
8	Lagerungsart: Halde Container Big Bags Sonstige:
	Abdeckung: Ohne Plane Deckel Sonstige:
9	Form der Lagerung: Kegel Trapez unregelmäßige Schüttung
	Sonstige:
10	Volumenbestimmung/Volumen (s. auch Pkt. D)
	☐ Volumen bekannt ☐ Messen ☐ Schrittmaß ☐ Schätzen ☐ Sonstige Volumen:
11	"Durchschnittliches" Größtkorn (95%-Perzentil):
	> 120 mm (Beschreibung):
12	Rechtswert:Hochwert:
13	Anwesende Personen:

В	Allgemeine Daten
1	Probenhomogenisierung
Пм	lischen in Edelstahlschüssel/Eimer Mischen durch Umsetzen Sonstige:
2	Probenverjüngung:
□di	rekte Abfüllung nach intensivem Vermischen Fraktionierendes Schaufeln Probenkreuz
	——————————————————————————————————————
∐ 50	onstige:
3	Probengefäß: Eimer Liter Braunglas Liter Headspace ml
Sc	onstige:
4	Vor-Ort-Untersuchungen: PAK-Sprühtest RFA Sonstige:
Ergeb	onisse:
5	Vorbehandlung: Uberschichtung mit Methanol Sonstige:
•••••	
6	Sonstige Bemerkungen/Beobachtungen (mit Sektorbezeichnung!):
•••••	
7	Die Deprobung wurde velletändig gemäß LACA DN 00 durchgeführt.
7	Die Beprobung wurde vollständig gemäß LAGA PN 98 durchgeführt: 💹 ja 💹 nein
Abwe	eichungen / Begründung:
•••••	

C Anzahl der entnommenen Proben

Malines	A	A le l	A
Volumen	Anzahl	Anzahl	Anzahl
[m³]	Einzelproben	Mischproben	Laborproben
	•		
≤ 30	8 🗌 12		2
- 60	12 18	3	
- 100	16 24	4	
150		 	
- 150	20 30	<u></u> 5	5
200			
- 200	24 36		
- 300	28 42	7	7
- 300	20 42		
- 400	32 48	8	П 8
- 400]		Li °
- 500	36 54	П9	П9
- 600	40 60	□ 10	10
			l —

Lage der	Einzelproben
Trapez:	i.d.R. 6 EP/Sektor
Kegel:	i.d.R. 4 EP/Sektor

D Lageskizze

Lage der Haufwerke und Sektoren, Bezeichnung der Probenahmestelle, Straßen, Gebäuden etc.

Nordpfeil

	Volumenermittlung Haufwerk/Teilbereich:
	Länge I: m
	Breite _{unten (= a)} : m
	Breite oben (= b): m
	Radius _{unten (=r oder r1)} : m
	Radius oben (= r2): m
	Höhe h: m
	Volumen V ca:m³
	Aufteilung inSektoren
	$egin{aligned} V_{\mathit{Kegel}} pprox & h * r_{\mathit{Grundfl\"{a}che}}^2 \ V_{\mathit{Kegelstumpf}} pprox & h \; (r_1^2 + r_1 r_2 + r_2^2) \ V_{\mathit{Trapezfirmige Miete}} = rac{a+b}{2} * h * l \end{aligned}$
Maßstab	
1:	

Erlä	uterungen zur Lageskizze:
	odokumentation:
E	Probentransport, -lagerung, Analytik
1	Untersuchungsstelle/Labor:
2	Probenüberführung und Lagerung bis zur analytischen Untersuchung:
	Transportdauer mit Datum und Uhrzeit:
	ungekühlt gekühlt Temperatur ca °C dunkel
3	Labornummer:
4	Hinweise an die Untersuchungsstelle:
5	Eingangsdatum Analysenlabor:
6	Vereinbarte Rückstelldauer Laborproben:Monate
Datı	um, Unterschrift Probenehmer:

III. Probendaten (für jede Mischprobe oder Hot-Spot-Probe auszufüllen)

Α	Proben- und Materialbeschreibung
1	Proben/Sektorenbezeichnung:
2	Probenahmedatum /Uhrzeit:
3	Material-/Bodenart:
-	onstiges:Vol%; Bauschutt caVol%;
Visuel	I homogen: ja nein Bodenart(en):
Konsis	stenz: fest schlammig sonstige:
Geruc	h: unauffällig auffällig nach:
Fremo	dbestandteile mineralisch:
	egel caVol% Beton caVol% Bauschutt gemischt caVol% phalt/Teer/Bitumen caVol% Schlacke caVol%Vol%
Fremo	bestandteile nicht-mineralisch:
ШΜ	etalle caVol%
<u> </u>	caVol%caVol%
В	Probenahme
1	Volumen Einzelprobe [l] O,5 (< 2 mm)
2	Volumen Laborprobe [l] 1 (< 2 mm) 2 (< 20 mm) 4 (< 50 mm) 10 (<120 mm) Stück = Einzelprobe
3	Aufschlussverfahren: Schurf durch Großgerät Schurfschlitz/-loch mit Schaufel Rammkernsondierung mm Sonstige:

Datun	n, Unterschrift Probenehmer:
6	Beobachtungen (z. B. Hot-Spot, einstufungsrelevante Parameter, z. B. Asbest):
5	Sonder- / Einzelprobe(n) (Beschreibung), z.B. für LHKW, BTX:
4	Probenahmegerät: Schaufel Bohrstock Hammer/Meißel Sonstige: